
Available online at www.sciencedirect.com

Procedia Engineering 00 (2015) 000–000
www.elsevier.com/locate/procedia

24th International Meshing Roundtable (IMR24)

Multithread Lepp-bisection algorithms in 2-dimensions
Pedro A. Rodrigueza, Maria-Cecilia Rivarab,∗

aDepartamento de Sistemas de Información, Universidad del Bio-Bio, Av. Collao 1202, Concepción, 4051381, Chile
bDepartamento de Ciencias de la Computación, Universidad de Chile, Avenida Beauchef 851, Santiago, 8370456, Chile

Abstract

We discuss and compare three multithread Lepp-bisection algorithms for the refinement of triangulations over multicore architec-
tures. We have obtained an efficient and robust serial implementation, and a partially scalable and efficient multithread method.
c© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 24th International Meshing Roundtable (IMR24).

Keywords: Collisions, efficiency, Lepp, Lepp-bisection, multicore, multithread, thread, speedup.

1. Introduction

Longest edge algorithms for local refinement of triangulations guarantee the construction of refined triangulations
that maintain the quality of the input mesh [2,5,7]. Lepp-bisection algorithm is an efficient reformulation of the
longest edge algorithm with the following advantages: (a) only local refinement operations are performed which
always maintain a conforming mesh (the intersection of pairs of triangles is either a common vertex, or a common
edge); (b) the use of the Lepp concept allows to easily design parallel algorithms.

Distributed longest edge based algorithms for the parallel refinement of triangulations have been discussed in the
literature. In a review paper for fluid dynamics applications, Williams [10] recommends the use of parallel 4-triangles
longest edge algorithm for the refinement of huge triangulations; Jones and Plassmann [4] discuss in detail a parallel
distributed 4-triangles refinement algorithm; Castaños and Savage [3] proposed a distributed parallelization of the
original longest edge algorithm in 3-dimensions; Rivara et al [6] proposed a simple algorithm for the global refinement
of tetrahedral meshes. Balman in [1] proposed an algorithm that uses a 8-tetrahedra longest edge algorithm.

A previous simple multithread Lepp-bisection algorithm (PA2 algorithm in this paper) for two-dimensional trian-
gulations over a simple architecture having 4 cores in one socket is studied in [8]. An algorithm for the refinement
of tetrahedral meshes is presented in [9]. Here we study the behavior of three variants of multithread Lepp-bisection
algorithm over an Intel E5-2660, 20 cores, 2 sockets, architecture. We present an efficient and robust serial implemen-
tation which is used to compute the speedup measures.

∗ Corresponding author. Tel.: +56-2-2978-4365 ; fax: +56-2-2689-5531.
E-mail address: mcrivara@dcc.uchile.cl (Maria-Cecilia Rivara)

1877-7058 c© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 24th International Meshing Roundtable (IMR24).

2 P.A. Rodriguez et al. / Procedia Engineering 00 (2015) 000–000

2. Serial Lepp-bisection algorithm

An edge E is a terminal edge in a triangular mesh τ if E is the longest edge of the triangles that share this edge.
In two dimensions, Lepp(t0), the longest edge propagating path of a triangle t0 [5,7], is a sequence of N increasing

neighbor triangles such that ti is the neighbor triangle of ti−1 by the longest edge of ti−1 that allows to find a unique
terminal edge either shared by one boundary triangle (tN) or two terminal triangles (tN−1, tN). Thus Lepp(t0) is a 2D
submesh that finishes when a terminal edge associated to triangle t0 is found in the mesh (see Fig. 1 (a)).

Given a triangle t0, the serial Lepp-bisection algorithm computes Lepp(t0) and refines the couple of terminal trian-
gles by longest edge bisection of these triangles. The process is repeated until the triangle t0 is refined (see Fig. 1).
This algorithm is formulated as follows [5]:

1: Serial-Lepp-Bisection-Algorithm(τ, S)
2: Input: τ, a quality triangulation, and S ⊂ τ, set of triangles to be refined.
3: Output: τ f , a refined and conforming final triangulation.
4: for (each triangle t ∈ S) do
5: while (t remains without being bisected) do
6: Find Lepp(t), terminal triangles tN−1, tN (triangle tN can be null if AB is a boundary edge)
7: Bisect the terminal triangles
8: end while
9: end for

0P (Lepp(t*))
1P (Lepp(t))

0 0
0P (Lepp(t*))

1P (Lepp(t))
0 0

t0

A

B

t0

A

B

(a) (b)

t’3t’3
1

2t
1t

3

1

2t
1t

4t

2t’

t*0

2t’

t*0

3

t’

t

t’

t’

Fig. 1. (a) Lepp(t0) = {t0, t1, t2, t3, t4} and Lepp(t∗0) = {t∗0, t
′
1, t
′
2, t
′
3, t2, t3, t4}, AB is a terminal edge; (b) First step of Lepp-bisection refinement of t0.

3. Multithread Lepp-bisection algorithms

We consider a shared memory multicore computer having p physical cores. To perform the refinement task, each
core Pi (i=1,...,p) is in charge of the parallel processing of an individual triangle t in S and its associated changing
Lepp sequence until the triangle t is refined in the mesh. Once the refinement of t is performed, Pi will pick up another
triangle of S to continue the refinement task.

To perform the parallel work, we need to deal with the following synchronization issues [8]: (a) To avoid collisions
associated to the parallel processing of triangles whose Lepp sub-meshes overlap; (b) To avoid data structure incon-
sistencies due to the parallel refinement of adjacent terminal triangles that belong to adjacent (non-overlapping) Lepp
sub-meshes. Mutexes are used as synchronization methods to control the access to shared data structure and to avoid
inconsistencies. Fig. 1 (a) illustrates the case of overlapping Lepp sub-meshes for triangles t0 and t∗0 in 2-dimensions,
where Lepp(t0) ∩ Lepp(t∗0) = {t2, t3, t4}.

We present three versions of multicore Lepp-bisection algorithms:

1. PA1. Marking Lepp Algorithm. If not collision is found, this algorithm locks the triangles of the full Lepp
computed and performs refinement of terminal triangles. If collision is detected, the partial Lepp computed
(until triangle t′3 in Lepp(t∗0) in Fig. 1 (a)) is discarded and the thread proceeds to pick up another triangle.

P.A. Rodriguez et al. / Procedia Engineering 00 (2015) 000–000 3

2. PA2. Partial Lepp Storing Algorithm. This multicore algorithm additionally to the work performed by the PA1
algorithm, also stores the partial Lepp computed for being later processed.

3. PA3. Lepp Recomputation Algorithm. This multicore algorithm recomputes Lepp(t) when triangle t is again
processed (neither the full Lepp is locked, neither the partial Lepps are stored). Only the terminal triangles and
their immediate neighbors are locked.

In the case of the Partial Lepp Storing algorithm (PA2), if the Lepp(t) is successfully computed, the triangles that
belong to Lepp(t) are marked as occupied and the terminal triangles are refined. On the contrary if a collision is de-
tected, the partial Lepp(t) is saved into the list L to be later processed (function RefineListOfPartialLepp(L) is invoked
at final of the algorithm shown below, to process pending partial Lepps).

1: PartialLeppStoringAlgorithm(τ, S)
2: Input: a quality triangulation τ; S ⊂ τ set of triangles to be refined
3: Output: a refined and conforming triangulation τ f

4: Initialize a list L of pending partial Lepps
5: while S , φ do
6: A free thread selects a triangle t from S ; mark t as occupied.
7: while t remains in mesh do
8: Compute Lepp(t) while non-occupied triangle is found
9: if collision is detected then

10: Insert partial Lepp(t) into L
11: else
12: Mark all the triangles in Lepp(t) as occupied
13: if neighbor triangles of terminal triangles are unmarked then
14: Refine terminal triangles and update S .
15: end if
16: end if
17: end while
18: end while
19: RefineListOfPartialLepp(L)

The Marking Lepp Algorithm is the same than the previous algorithm without the instructions 4, 9, 10 and 19. For
the Lepp Recomputation Algorithm, if two threads P0 and P1 refine in parallel triangles t0, t∗0, with overlapping Lepps
(see Fig. 1 (a)), the thread that access a locked triangle is freed and allowed to refine another triangle. The triangles in
the propagation path are not marked as occupied, and the terminal triangles and their immediate neighbors are locked.
Thus the refinement of a pair of terminal triangles is not performed if at least one of its neighboring triangles is locked.

1: LeppRecomputationAlgorithm(τ, S)
2: Input: a quality triangulation τ; S ⊂ τ set of triangles to be refined
3: Output: a refined and conforming triangulation τ f

4: while S , φ do
5: A free thread P selects a non-locked triangle t from S
6: Compute full Lepp(t) (find the terminal triangles)
7: if Collision is not detected while computing Lepp(t) then
8: if Neighbor triangle of terminal triangles is not locked then
9: Lock terminal triangles and neighbor triangles

10: Refine terminal triangles
11: Unlock neighbor triangles and update S .
12: end if
13: end if
14: end while

4 P.A. Rodriguez et al. / Procedia Engineering 00 (2015) 000–000

A randomization technique was also used in the three algorithms. The random assignment of the triangles of S
to the processors contributes to minimize the number of collisions produced by parallel processing of overlapping
Lepps.

4. Empirical testing

Table 1 shows the behavior of the serial algorithm for an input mesh of approximately three millions of randomly
generated input points. The triangles to be refined are randomly selected at each refinement iteration.

Table 1. Behavior of the serial algorithm. Random data (set of points randomly generated)

] Iteration Mesh Size Triangles to Final] Added Total Average Time
] Triangles be refined mesh size Triangles time (ms) by Triangle (ms)

0 5,999,945 0 0 0 0 0
1 5,999,945 1,199,495 10,789,679 4,789,734 27,955 0.0058
2 10,789,679 2,157,626 18,192,544 7,402,865 14,191 0.0019
3 18,192,544 3,637,167 29,741,177 11,548,633 23,906 0.0021
4 29,741,177 5,950,849 47,694,435 17,953,258 38,014 0.0021

Tables 2, 3 and 4 summarize statistics obtained for the four refinement steps of Table 1 by respectively using
Marking Lepp algorithm (PA1), Partial Lepp Storing algorithm (PA2) and Lepp recomputation algorithm (PA3), over
an Intel E5-2660 architecture. Figure 2 summarizes the speedup obtained for the three algorithms.

Table 2. Statistics on Marking Lepp algorithm (PA1), random selection. Intel Xeon E5-2660 (2 sockets, 20 cores).

Execution Time (ms) Speedup
] Iter Serial Time 2P 4P 8P 10P 12P 16P 20P 2P 4P 8P 10P 12P 16P 20P

1 27955 18681 10424 6721 6403 5993 5925 6077 1.5 2.7 4.2 4.4 4.7 4.7 4.6
2 70102 45561 28463 16945 17324 15409 15585 17032 1.5 2.5 4.1 4.0 4.5 4.5 4.1
3 136154 93503 54613 36627 32594 32496 32606 37655 1.5 2.5 3.7 4.2 4.2 4.2 3.6
4 240220 165247 95734 62095 64368 61135 62622 72920 1.5 2.5 3.9 3.7 3.9 3.8 3.3

Table 3. Statistics on Partial Lepp Storing algorithm (PA2), random selection. Intel Xeon E5-2660 (2 sockets, 20 cores).

Execution Time (ms) Speedup
] Iter Serial Time 2P 4P 8P 10P 12P 16P 20P 2P 4P 8P 10P 12P 16P 20P

1 27955 19512 11295 7651 7015 6532 6421 7317 1.4 2.8 3.7 3.9 4.3 4.4 3.8
2 70102 50834 30019 20525 19091 17330 17133 17846 1.4 2.3 3.4 3.7 4.1 4.1 3.9
3 136154 101037 60213 38725 34060 33457 35982 38046 1.4 2.3 3.5 4.0 4.1 3.8 3.6
4 240220 186306 104086 61763 58282 58567 64411 69762 1.3 2.3 3.9 4.1 4.1 3.7 3.4

Table 4. Statistics on Lepp Recomputation algorithm (PA3), random selection. Intel Xeon E5-2660 (2 sockets, 20 cores).

Execution Time (ms) Speedup
] Iter Serial Time 2P 4P 8P 10P 12P 16P 20P 2P 4P 8P 10P 12P 16P 20P

1 27955 18286 10622 6907 6671 6253 6310 6685 1.5 2.6 4.1 4.2 4.5 4.4 4.2
2 70102 49107 28083 18178 18036 16546 15000 18858 1.4 2.5 3.9 3.9 4.2 4.7 3.7
3 136154 100154 57974 32402 32471 32475 31240 37156 1.4 2.4 4.2 4.2 4.2 4.4 3.7
4 240220 181162 101169 58420 54109 54047 57430 65744 1.3 2.4 4.1 4.4 4.4 4.2 3.7

P.A. Rodriguez et al. / Procedia Engineering 00 (2015) 000–000 5

1P 2P 4P 8P 10P 12P 16P 20P
0

1

2

3

4

5

Speedup comparison / Intel Xeon E5-2660

PA1 PA2 PA3

Number of cores
S

p
e

e
d

u
p

PA1

PA3
PA2

Fig. 2. Speedup behavior comparison. Intel Xeon E5-2660, random selection.

5. Conclusions

An efficient and linear serial implementation was obtained (see Table 1). This requires 0.002 ms for each new
triangle introduced in the refined mesh, independently of the mesh size. For each multithread algorithm, the speedup
is computed as Ts/Tp where Ts and Tp are the times of the serial and multithread algorithms, respectively.

The analysis of the speedup behavior shows that Lepp recomputation algorithm (PA3) shows a better partially
scalable behavior until 12 cores, since this minimizes the number of blocked triangles. The PA1 and PA2 algorithms
achieved similar behavior but by below of the algorithm PA3 for 8 to 12 cores.

Note that at each refinement step (Table 1) we have refined approximately 20% of the triangles in the current
mesh. Thus an almost global refinement is performed at each iteration which tends to maximize the number of Lepp
collisions. A next step in our research will consider dividing the mesh into two parts to be assigned to each socket to
reduce inter socket communication.

Acknowledgements

Work partially supported by Departamento de Ciencias de la Computación, Univ. de Chile, Departamento de
Sistemas de Información and Research Group GI150115/EF, Univ. del Bio-Bio. We used the supercomputing infras-
tructure of the NLHPC (ECM-02).

References

[1] M. Balman, In ICPP Workshops, Tetrahedral mesh refinement in distributed environments. pp 497–504. IEEE Computer Society, (2006).
[2] C. Bedregal C, M-C. Rivara, A study on size-optimal longest edge refinement algorithms. In: proceedings of the 21st International Meshing

Roundtable, pp. 121–136, (2013).
[3] J. Castaños, J. Savage, Parallel refinement of unstructured meshes. Technical report cs-99-10, Department of Computer Science, Brown Uni-

versity, (1999).
[4] M. Jones, P. Plassmann. Parallel algorithms for the adaptive refinement and partitioning of unstructured meshes. In Proceedings of the Scalable

High-Performance Computing Conference IEEE, pages 478–485, (1997).
[5] M-C. Rivara, New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations, International Journal for

Numerical Methods in Engineering, vol. 40 (18), pp. 3313–3324, (1997).
[6] M-C. Rivara, C. Calderon, A. Fedorov, N. Chrisochoides. Parallel decoupled terminal-edge bisection method for 3d mesh generation. Eng.

Comput. (Lond.), 22(2):111–119, (2006).
[7] M-C. Rivara, Lepp-bisection algorithms, applications and mathematical properties. Appl. Numer. Math., 59(9):2218–2235, (2009).
[8] M-C. Rivara, P. Rodriguez, R. Montenegro, G. Jorquera. Multithread parallelization of lepp-bisection algorithms. Appl. Numer. Math.,

62(4):473–488, (2012).
[9] P. A. Rodriguez, M-C. Rivara, Multithread Lepp-Bisection Algorithm for Tetrahedral Meshes. In Proceedings of the 22nd International Meshing

Roundtable, Sandia National Laboratories, pp 525-540, (2014).
[10] R. Williams, Adaptive parallel meshes with complex geometry. In Numerical Grid Generation in Computational Fluid Dynamics and related

Fields. Elsevier Science Publishers, pages 201–213, (1991).

